Is the Common Good? A New Perspective Developed in Genetic Algorithms

نویسنده

  • Stephen Chen
چکیده

Similarities are more important than differences. The importance of these common components is set forth by the commonality hypothesis: schemata common to aboveaverage solutions are above average. This hypothesis is corroborated by the isolation of commonality-based selection. It follows that uncommon components should be below average (relative to their parents). In genetic algorithms, the traditional advantage of crossover has been attributed to the recombination of (uncommon) parent components. However, the original analysis focused on how the schemata of a single parent were affected by crossover. Using an explicit two-parent perspective, the preservation of common components is emphasized. The commonality hypothesis suggests that these common schemata are the critical building blocks manipulated by crossover. Specifically, common components have a higher expected fitness than uncommon components. The Commonality-Based Crossover Framework redefines crossover as a two step process: 1) preserve the maximal common schema of two parents, and 2) complete the solution with a construction heuristic. To demonstrate the utility of this design model, domainindependent operators, heuristic operators, and hybrid operators have been developed for benchmark and practical problems with standard and non-standard representations. The new commonality-based operators have performed consistently better than comparable operators which emphasize combination. In heuristic operators (which use problem specific heuristics during crossover), the effects of commonality-based selection have been isolated in GENIE (a genetic algorithm that eliminates fitness-based selection of parents). Since the effectiveness of construction heuristics can be amplified by using only commonality-based restarts, the preservation of common components has supplied selective pressure at the component (rather than individual) level. This result corroborates the commonality hypothesis--the preserved common schemata are above average. Transferring the concept of commonality-based selection back to standard crossover operators, beneficial changes should occur more frequently when they are restricted to uncommon schemata. Since multiple parents are required to identify common components, commonality-based selection is an advantage that multi-parent operators (e.g. crossover) can have over single-parent operators (e.g. mutation). These observations present a novel perspective on iterative improvement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...

متن کامل

A multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation

Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first...

متن کامل

A new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework

Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

Genetic and Memetic Algorithms for Sequencing a New JIT Mixed-Model Assembly Line

This paper presents a new mathematical programming model for the bi-criteria mixed-model assembly line balancing problem in a just-in-time (JIT) production system. There is a set of criteria to judge sequences of the product mix in terms of the effective utilization of the system. The primary goal of this model is to minimize the setup cost and the stoppage assembly line cost, simultaneously. B...

متن کامل

Designing Stochastic Cell Formation Problem Using Queuing Theory

This paper presents a new nonlinear mathematical model to solve a cell formation problem which assumes that processing time and inter-arrival time of parts are random variables. In this research, cells are defined as a queue system which will be optimized via queuing theory. In this queue system, each machine is assumed as a server and each part as a customer. The grouping of machines and parts...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999